CLASSIFICATION RESTRICTED SECURITY INFORMATION
CENTRAL INTELLIGENCE AGENCY INFORMATION FROM

FOREIGN DOCUMENTS OR RADIO BROADCASTS

REPORT CD NO.

STAT

STAT

DATE OF INFORMATION

1951

COUNTRY **SUBJECT**

Scientific - Minerals/Metals,

HOW

metallurgy, furnaces

DATE DIST. 5 NOV 1953

PUBLISHED Book

WHERE

PUBLISHED Moscow

USSR

NO. OF PAGES

DATE

PUBLISHED 1951

SUPPLEMENT TO

LANGUAGE Russian REPORT NO.

OF THE UNITED STATES, WITHIN THE MEANING OF TITLE 18, SECTIONS T NO 784. OF THE U.S. CODE, AS AMENDED. ITS TRANSMISSION OR REVE ATION OF ITS CONTENTS TO OR RECEIPT BY AN UNAUTHORIZED PERSON I THE REPRODUCTION OF THIS FORM IS PROMISETED

THIS IS UNEVALUATED INFORMATION

SOURCE

Metallursicheskiye Pechi, Metallurgizdat, 1951, pp 3-9

FOREWORD AND CONTENTS OF SOVIET BOOK ON METALLURGICAL FURN. CES

Comment: The 975-page book entitled Metallurgicheskiye Pechi (Metallurgical Furnaces) was published in 1951 by the State Scientific and Technical Publishing House for Literature on Ferrous and Nonferrous Metallurgy. Professor M. A. Glinhov, Doctor of Technical Sciences, was scientific editor of the book. The following includes a summary of Clinkov's foreword and the complete table or contents.]

Foreword by Scientific Editor

Metallurgical Furnaces was written by a group of professors and docents of the Metallurgical Furnaces chairs of six higher educational institutions and one scientific research institute, as follows: Moscow Institute of Steel, four authors; Ural Polytechnic Institute, three authors; Dnepropetrovsk Metallurgical Institute, two authors; Moscow Institute of Monferrous Alloys and Gold, one author; Leningrad Polytechnic Institute, one author; Siberian Metallurgical Institute, one author; and the State Scientific Research Institute of Nonferrous Metals, one author.

The metallurgical furnaces course has not yet been sufficiently established because of serious differences of opinion formerly existing in the field of the theory of furnaces.

The previous theories of furnaces, such as the hydraulic or energetic theories, cannot now be used; therefore it has been necessary to formulate the fundamental principles of the contemporary theory of furnaces on the basis of the experience of Soviet science and practice.

KESTRICTED CLASSIFICATION

DISTRIBUTION STATE NAVY

RESTRICTED

For these reasons, no textbook on metallurgical furnaces had been written up to the present. Existing books, illustrating various trends in the field of the theory of furnaces, naturally did not satisfy educational purposes. In the process of their work, the authors of Metallurgical Furnaces came to the conclusion that it would be necessary to revise the methods of constructing the course and to rework a number of subjects previously treated on the basis of inferior or dubious data.

This textbook was based on the data of Soviet science and the advanced practice of Soviet plants, and on the results obtained at planning organizations. The authors attempt to present the information in the most condensed form possible. This is not fully accomplished in all cases. However, the textbook is a good substitute for the several books previously used by students over a period covering three semesters.

In conformity with the program, this book does not include any information on the electric furnaces of ferrous metallurgy or any data on automatic control, since these subjects are studied in separate courses. Also, data on laboratory practice are not included in the book because an appropriate manual is proposed for publication.

The appendix contains certain reference data essential in studying the course and required for the solution of examples given in the book.

The bibliography lists 175 Soviet publications, including several translations from English and German texts.

Separate sections and chapters in the book were written by the following authors:

Introduction and Conclusion

Γ

Professor N. A. Glinkov and A. I. Vashchenko

Fuels and Combustion Calculations

Decent S. G. Troyb, Candidate of Technical Sciences (Chapters 1-7) and Docent M. V. Kantorov, Candidate of Technical Sciences (Chapters 8-12)

Haterials for Construction of Furnaces

Docent L. A. Plotnikov, Candidate of Technical Sciences

The Mechanics of Gases

Professor M. A. Clinkov and Professor V. A. Paum, Doctor of Technical Sciences

Theory of Similarity and Heat Transfer by Convection Professor M. A. Kuz'min, Doctor of Technical Sciences

Heat Transfer by Radiation

Docent D. V. Budrin, Candidate of Technical Sciences

Heat Transfer by Conduction

Professor I. D. Semikin

Heating and Melting of Metal

Professor N. Yu. Tayts, Doctor of Technical Sciences

General Principles of Furnaces

Docent I. S. Nazarov, Candidate of Technical Sciences; Professor M. A. Glinkov; Professor B. I. Katayev, Doctor of Technical Sciences

nical Sciences

- 2 -

RESTRICTED

RESTRICTED

Equipment and Elements of Furnaces

B. I. Kitayev and I. D. Semikin

Fuel Economy of Metallurgical Industry and Furnaces for Ferrous Metallurgy Plants

Docent A. I. Vashchenko, Candidate of Technical Sciences

Furnaces for the Plants of Nonferrous Docent A. Ya. Mikhaylenko, Candidate of Technical Sciences; B. L. Granovskiy, Engineer; V. V. Krapuchin, Candidate of Technical Sciences

Table of Contents

Tritroduction Pa				
Introduction	10			
Part One. Fuel and Materials for Construction of Furnaces				
Section I. Fuels and Combustion Calculations				
Chapter 1. General Information	21			
Chapter 2. Chemical Composition of Fuels	25			
Chapter 3. Air Consumption, Composition and Quantity of Combustion Products. The Equation of Material Balance.	35			
Chapter 4. The Heat of Combustion. The Equation of Heat Bale	nce 44			
Chapter 5. Analytical Calculation of the Process of Fuel Combustion	63			
Chapter 6. Graphical Calculation of the Combustion Process	76			
Chapter 7. The Coefficient of Air Excess. Significance and Methods of Determination	84			
Chapter 8. General Classification of Fuels	. 89			
Chapter 9. Natural Solid Fuels	91			
Chapter 10. Manufactured Solid Fuels	111			
Chapter 11. Liquid Fuels	125			
Chapter 12. Gaseous Fuels	1314			
Section II. Materials for Construction of Furnaces				
Chapter 1. General Information	148			
Chapter 2. Silica and Aluminosilicate Refractories	1.714			
Chapter 3. High-Alumina Refractories	193			
Chapter 4. Magnesite and Chromite Refractories	196			
Chapter 5. Other Refractories and Certain Building Materials	204			
Chapter 6. Utilization of Materials for Furnace Construction	219			

- 3 -

RESTRICTED

Γ

RESTRICTED

art T	wo. I	unde	amentals of Furnace Heat Engineering		
Sec	tion 1	II.	Mechanics of Gases and Theory of Similarity		
CI	hapter	٠1.	General Information	229	
Cl	hapter	2.	Equilibrium of Gases	233	
Cl	hapter	3.	Elements of the Theory of Gas Flow	240	
Cł	napter	4.	Head Losses in Gas Flow	253	
Cl	napter	5.	Certain Practical Cases of Using Bernoulli's Equation	264	
Ch	apter	6.	Flow of Gases in Various Parts of a Furnace (Free Stream, Limited Stream)	276	
Ch	aptei	7.	Forcing the Motion of Gases in a Furnace	283	
Ch	apter	8.	Similarity Theory and Modeling	302	
Sect	ion I	v. :	Heat Transfer		
Ch	apter	1.	General Information	329	
Ch	apter	2.	Heat Transfer by Convection	332	
Ch	apter	3.	Heat Transfer by Radiation	356	
Ch	apter	4	Heat Transfer by Conduction	423	
Section V. Heating, Melting, and Cooling of Metal					
Ch	apter	1.	Heating and Cooling of Metal	490	
Ch	apter	2.	Oxidation, Decarburization, and Overheating of Metal	526	
Ch	apter	3.	Melting of Metal	538	
Sect	ion V	I. (General Principles of Furnace Design		
Ch	apter	1.	General Information	545	
Ch	apter	2.	Heat Work of a Furnace	555	
Ch	apter	3.	Furnace Capacity and Fuel Consumption	577	
Ch	apter	4.	Heat Balance of a Furnace and Determination of Fuel Consumption	583	
Ch	apter	5.	Calculation and Design of Furnaces	590	
rt Th	ree.	Meta	allurgical Furnaces		
Sect	ion V	ΕΙ.	Equipment and Elements of Furnaces		
Ch	apter	1.	Fuel Burning Devices	597	
Ch	apter	2.	Elements of Metallurgical Furnaces	652	

STAT

RESTRICTED

Γ

RESTRICTED

8 11 1 mm = 6 m	
Section VIII. Fuel Economy of Metallurgical Plants	
Chapter 1. Storage of Solid and Liquid Fuels	695
Chapter 2. Gas Handling and Storing Equipment of Metallurg Plants	ical 698
Section IX. Furnaces for the Plants of Ferrous Metallurgy	
Chapter 1. Shaft Furnaces	715
Chapter 2. Bath-Type Melting Furnaces	724
Chapter 3. Heating Furnaces	734
Section X. Furnaces for the Plants of Nonferrous Metallurgy	
Chapter 1. Flame, Shaft, and Electric Furnaces in the Metal of Nonferrous Metals	llurgy 801
Chapter 2. Furnaces for Burning Sulfide Ores and Semifinish Products	ned 808
Chapter 3. Shaft Furnaces	814
Chapter 4. Reverberatory Furnaces for Smelting Copper Ores Concentrates for Obtaining a Matte	and 822
Chapter 5. Refining Furnaces for Nonferrous Metals	830
Chapter 6. Tube Rotary Furnaces	836
Chapter 7. Melting Furnaces for Nonferrous Metals	842
Chapter 8. General Information on Electric Furnaces	850
Chapter 9. Resistance Furnaces	853
Chapter 10. Induction Furnaces	880
Chapter 11. Electric-Arc Furnaces	912
Safety Practice in Furnace Operations	919
Conclusion	992
Bibliography	926
Appendix	933

RESTRICTED

STAT